
Learning and Adaptation in an Airborne Laser Fire Controller 
 

Phillip D. Stroud (stroud@lanl.gov) 
Los Alamos National Laboratory 

Mail Stop F607, Los Alamos, NM  87545 
 

LAUR 95-1442 
IEEE Transactions on Neural Networks, Vol. 8, No. 5, 1997 

 
 
 

 Abstract-- A simulated battlefield, containing airborne lasers that shoot 
ballistic missiles down, provides an excellent test-bed for developing adaptive 
controllers. An airborne laser fire controller, which  can adapt the strategy it uses for 
target selection, is developed. The approach is to transform a knowledge-based 
controller into an adaptable connectionist representation, use supervised training to 
initialize the weights so that the adaptable controller mimics the knowledge-based 
controller, and then use directed search with simulation-based performance 
evaluation to continuously adapt the controller behavior to the dynamic 
environmental conditions. New knowledge can be directly extracted from the 
automatically discovered controllers. Three directed search methods are characterized 
for production training, and compared with the better characterized gradient descent 
methods commonly used for supervised training. Automated discovery of improved 
controllers is demonstrated, as is automated adaptation of controller behavior to 
changes in environmental conditions. 
 
Keywords: Adaptive control, simulation, complex system, evolutionary 
programming, airborne laser, neural network. 

 
1. Introduction 

 Simulation is playing an increasingly important role in training, analysis, and operational planning for 
many complex systems. In the powerful distributed object-oriented simulation approach, software actors 
emulate the various system elements, and interact through asynchronous message passing [1]. An 
important class of complex system contains entities which can adapt their behavior to make themselves 
more effective within their complex, dynamic environment [2-4]. These entities have a component which 
perceives the state of the entity and its environment, and selects an action from a set of possible actions. 
The behavior of an entity is its mapping from the space of all possible perceived states onto the set of all 
actions the entity is capable of performing [5]. When an entity continuously selects its own actions, the 
behavior forms the basis of a controller for the entity. 
 This paper begins by developing a traditional knowledge-based controller to select targets for an 
Airborne Laser (ABL) theater missile defense system. The fire controller inputs are the parameters 
associated with possibly dozens of engageable boosting missiles. The fire controller output specifies 
which of the missiles to intercept next. This knowledge-based controller incorporates the expertise of 
mission analysts and design engineers, and can be encapsulated in the rule: select that target which can be 
destroyed in the shortest time. Section 2 describes the ABL, the environment in which it operates, the role 
of the fire controller, and the knowledge-based expert controller. 
 This knowledge-based fire controller, though it performs much like a human operator, is static. 
Furthermore, it arose from experience with a limited set of scripted scenarios. Theater missile defense 
occurs in a complex system that contains many interacting elements (transporter/launchers, missiles, 
radars, surveillance and combat aircraft, air and ground based interceptors, troop units, command centers, 
weather, etc.). Tactics can evolve on both sides. For example, new spatial or temporal missile launch 
patterns may be found to be more effective against a baseline missile interceptor doctrine. In this complex 



  

 

2

environment, a controller must be able to adapt its behavior. The software controller of a simulated entity 
in a simulation must likewise have the ability to adapt its behavior. 
 The ability to adapt to a dynamic environment is achieved by transforming the knowledge-based 
controller into an adaptable connectionist representation, and then using directed search methods to find 
new behaviors that are more effective [6]. The directed search Evaluation of the performance of trial 
controllers, which is fundamental to any search, is accomplished  by running simulations of the complex 
battlefield. A connectionist configuration, the multi-linear network [7], provides an adaptable 
representation of the fire controller. The multi-linear network representation of the fire controller is 
described in Section 3.  
 There are two types of training that apply to adaptable controllers. The first type, supervised training, 
is a search for the connectionist controller that best mimics a given state-action mapping (in this case, that 
of the knowledge-based controller). The supervised training process is described in Section 4. The second 
type, production training, is a directed search for improved state-action mappings, using simulation-based 
evaluation of how well an actor achieves goals in its interactions with the rest of the system. Real-time or 
on-line adaptation can be accomplished if the directed search process is carried out faster than the time 
scale of the changes in the system. The production training process is described in Section 5. 
 Three classes of training methods, based on regression, gradient descent, and directed search, are 
examined in this paper. Regressive methods provide extremely efficient supervised training of the multi-
linear network.  They are used to find the optimal solution, which is useful in evaluating the gradient 
descent and directed search methods. The regressive training methods are examined in Section 6. 
 Gradient descent methods are used in most applications of supervised neural network training, and as 
such are well characterized. They are not generally effective in production training, since there will be 
many local optima, and since the gradient can not be implicitly obtained. Gradient descent methods can 
provide a standard of comparison for the directed search methods. The use of gradient descent methods 
for supervised training of a multi-linear network ABL fire controller is developed in Section 7. 
 Directed search methods can be applied to both supervised and production training. Three directed 
search methods are examined in Section 8: forward-biased pivot offset with simulated annealing, 
downhill simplex, and genetic algorithms. Each of these methods is compared with the gradient descent 
methods for supervised training, based on the required number of performance evaluations. These 
directed search methods are also evaluated for production training. Automatic discovery of improved 
controllers is demonstrated. Several examples are provided in which the fire controller  adapts its 
behavior to modifications in environmental conditions. 
 

2. The Airborne Laser Fire Controller  

2.1 The Airborne Laser theater ballistic missile interceptor. 
 The ABL is a system that intercepts theater ballistic missiles during their boost phase [8,9]. It consists 
of a dedicated wide-body aircraft, a high power laser, an optical train culminating with a turret mounted 
transmitting mirror, and a suite of sensors and missile trackers. Since the reach of the system is several 
hundred kilometers, these intercepts can take place over enemy territory while the ABL itself remains in 
friendly airspace. The system thus can protect large areas and troop formations from missiles capable of 
carrying any of a variety of munitions. In operation, an ABL flies out to a designated region of airspace 
and begins a surveillance pattern. As missiles are detected, they are entered into a track file maintained on 
the ABL. The laser can fire at one missile at a time.  
 When there are multiple missiles in the track file, the overall performance of the ABL depends on 
how intelligently it chooses the target engagement order. Because of uncertainty in the burn-out time of 
the missiles, the merit of a particular target selection order contains a stochastic component and can not be 
definitely evaluated. There is some likelihood that a missile will burn out during ABL engagement, thus 
surviving to deliver its payload. As the number of missiles in the track file gets large, the number of 
permutations in the firing order quickly becomes too large to evaluate all of the possibilities. The ABL 
fire controller has the task of selecting which missile (out of possibly dozens in the track file) to engage 
next, in the presence of uncertainty, and without the possibility of evaluating the exact merits of the 
choices. 
 
2.2 The knowledge-based ABL fire controller. 



  

 

3

 A knowledge-based fire control strategy emerged during the conceptual development of the ABL. 
This baseline expert fire controller selects that target in the track file which is evaluated to require the 
shortest amount of time to destroy. The destruction time estimate is the sum of the slew time (to rotate the 
turret so it points toward the target) and the dwell time (to accumulate a lethal fluence with the deliverable 
intensity). The deliverable intensity is a complicated function of a number of parameters: the range to 
target, the target altitude, the azimuth angle from the nose of the plane to the target, the target aspect 
angle, target and platform velocities, atmospheric conditions, etc. This expert fire controller requires high 
fidelity atmospheric propagation and missile engagement models, so that it can accurately evaluate the 
deliverable intensity [10-12]. The priority of a target is taken as the inverse of its estimated time-to-kill. 
The controller evaluates the target priority value for each missile in the track file, and selects that missile 
with the highest value. The target priority as a function of range to target and target altitude is shown in 
Fig. 1, for targets on bore-sight, with representative values taken for the remaining parameters. The ridge 
structure that appears between 10 and 15 km target altitude is due to a layer of strong atmospheric 
turbulence located at the tropopause. This knowledge-based expert controller has been used in several 
major ABL simulations [13-15], and was able to perform at about the same level as a human operator 
manually selecting targets on a simulated ABL console [16]. 

0.0

0.5

1.0

1.5

2.0

T
ar

ge
t 

P
rio

rit
y

Range-km

5
100 700

70

Altitude
km

 
  

Figure 1. The target priority assigned by the shortest time-to-kill knowledge-based fire 
controller, as a function of the range to target, and the target altitude, for targets on bore-sight 
(no slew), and other target parameters fixed at representative values. 

 
2.3 Simulation-based evaluation of the fire controller performance. 
 A simulation package ELASTIC (Evolutionary Los Alamos Simulation-based Training for Intelligent 
Controllers) was developed to evaluate the performance of various controllers. ELASTIC provides a 
collection of C++ classes that model the various entities in missile defense. The kernel of the simulation 
evaluates the number of missiles killed in a sortie. In a sortie, an airborne laser flies to its designated loiter 
area and begins surveillance. Theater missiles are launched at unknown times, from unknown launch 
locations, and to unknown targets. The launch zone, target zone, number and type of missiles are selected 
for consistency with a scenario of interest. The scenario used here has a rectangular missile launch zone, 
400 km wide and 200 km deep. The ABL is restricted to a rectangular area 240 km wide and 50 km deep. 
The launch zone and loiter box are 200 km apart. The missiles are launched in the general direction of the 
loiter box, with an angular spread of ±25°. ELASTIC generates random missile launch scripts consistent 
with the scenario. The missiles are flown with a 4 degree-of-freedom trajectory model, in order to obtain 



  

 

4

sufficient fidelity. The ABL system parameters (laser power, beam transmitter aperture, etc.) were 
selected to provide roughly a one-half or two-thirds intercept probability. 
 A nominal salvo was arbitrarily fixed at 100 missiles launched within a three minute period. The 
missiles have a fly-out range of between 400 and 600 km. In order to obtain statistical significance, ten 
independent salvos are simulated for the evaluation of each trial controller, for a total of 1000 missiles. 
The simulation has been implemented on several computers. On a Macintosh Quadra, 90.0 sec of 
computing time are required to simulate these 10 sorties and get a performance evaluation of a trial 
controller. On a DEC alphaStation, an evaluation requires 1.71 sec, while 1.95 sec are required on an HP 
Apollo series 735 work station. 
 The same 10 sorties are used to evaluate the various controllers. The shortest time-to-kill fire 
controller intercepts 625 out of these 1000 missiles. For comparison, a fire controller that selects the next 
target at random only intercepts 512 of these 1000 missiles. A case was simulated in which the missiles 
were launched with long time intervals, so that there was never more than one target for the fire controller 
to choose from. In this case, the ABL intercepts 750 out of 1000 missiles. For this particular geometry, 
250 of the 1000 missiles are not engageable regardless of the fire controller, because they are too far 
away, or because the plane is heading the wrong way when they are launched.  
 The accuracy of a performance evaluation based on simulation of 1000 missile engagements is 
characterized as follows. Assume that 250 of the 1000 missiles are unengageable. Of the remaining 750 
missiles, 625 are intercepted in a particular evaluation. The intercept probability for engageable missiles 
is then estimated at p=0.833. The unbiased estimator of the standard deviation [17] of the number of 
missiles intercepted out of the 750 engagable would be given by 750[p(1-p)/749]1/2 = 10.2. The estimation 
of the performance of the controller after a simulation of 1000 engagements is thus 625 ± 10.2. A series 
of 20 independent simulations of 1000 engagements each, using the shortest time-to-kill controller, had 
an actual standard deviation of 9.3 missile intercepts. 
 There are several obvious approaches for improvement of this baseline fire control algorithm. One 
such approach would employ an estimate of the probability that a missile receives a lethal fluence prior to 
burning out. The target selection would then be based on maximizing the kill probability per unit time. In 
a chess-like approach, all targets in the track file would be evaluated for estimated time-to-kill or kill 
probability per unit time. The best three or four might then be evaluated at higher fidelity, looking at all 
firing order permutations. There is also information about missile clustering that might be used. These 
manual knowledge engineering approaches to improving the fire controller are not pursued in this paper. 
Instead, the baseline fire controller is transformed into an adaptable structure, which then learns better 
behavior automatically. 
 

3. The Multi-linear Net 

 The knowledge-based fire controller described above provides a mapping from several target 
parameters into a target priority value, for each missile in the track file. The target priority was found to 
depend strongly on just three parameters: the range to target, the target altitude, and the required turret 
slew angle. A starting guideline for designing the structure of an adaptable representation of the fire 
controller is that it takes these three parameters as inputs, and generates an output that characterizes the 
priority of the target. The controller input {xk} is a vector of these three target parameters, roughly 
normalized onto the interval (0,1). x1 represents the ground range from the ABL to the target. x2 
represents the target altitude above the ground. x3 is the normalized angle from the current beam turret 
bearing to the target bearing. The input parameters are summarized in Table 1. The actual parameters 
(range, altitude, slew angle) map linearly onto the controller input parameters, {xk}. A missile altitude of 
25km, for example, corresponds to x2= 0.308. 
 

parameter interpretation of  
small value (0) 

interpretation of large 
value (1) 

x1 range to target 
(km) 

near 
100 km 

far 
700 km 

x2 target altitude 
(km) 

low 
5 km 

high 
70 km 



  

 

5

x3 slew angle 
(deg) 

on bore-sight 
0 deg slew 

off bore-sight 
120 deg slew 

Table 1. The ABL fire controller input parameters 
 
 An adaptable structure that assigns an adjustable priority value to various regions of the input space is 
capable of representing the knowledge contained in the original controller. A multi-linear expansion, 
implemented as a connectionist network, is ideally suited for representing knowledge with this structure 
[8]. The multi-linear net is a special case of a functional link net [18], in which the expansion functions 
are localized in the input space, rather than formed by various polynomials. It can also be seen as a non-
radial variant of a radial basis function expansion network. It can be considered to be a three layer 
network. The first layer has one input neuron for each of the three target parameters. The input neurons 
can perform the normalization of the input parameters, or simply receive pre-normalized parameters. 
Each neuron in the second layer corresponds to a particular region of input space. The second layer has 
one neuron per expansion function, the output of which indicates to how close the input state is to the 
corresponding region of input space. If the input vector matches one of the expansion function centers 
exactly, the corresponding node will have a value of 1, while all other second layer nodes will have a 
value of 0. The third layer is an output node which produces a linear combination of the second layer 
outputs. The weights of the output layer are adjustable, and have a semantic interpretation as the target 
value of the corresponding regions of input space. 
 Any linear transformation of one input x to output y can be written y = w1 1 x( ) + w2x . This can be 
seen as a linear combination of two functions of x, namely h1=1-x and h2=x. The expansion coefficients 
have semantic meaning as follows: w1  is the output when the input is low (x=0), and w2  is the output 
when input is high (x=1). When the input value is high, the first expansion function has a value of zero, 
while the second has a value of one. This linear transform can be extended to characterize more than two 
input states. For example, if {w1,w2,w3} represents the output for {low, medium, high} input values, the 
expansion can be written y = w1T x 0( ) + w2T x 0.5( ) + w3T x 1( ) . T(x) is a triangular expansion 
function given by MAX(0,1-|x/b|) where b is the triangle half-base. For n uniformly spaced centers, b is 
given by 1/(n-1). This expansion can also be extended to more than one input dimension, whereupon it 
becomes the multi-linear expansion. This extension is accomplished by forming all the products of 
expansion functions, one from each input dimension. The total number of expansion functions, H, is the 
product over all input dimensions, of the number of expansion centers in the input dimension. For the 
case of 3 input dimensions, where the input set is {x1, x2, x3}, expanding on two centers in each 
dimension (at 0 and 1) gives a 2x2x2 multi-linear network with the expansion functions [8] 
 

h1 = (1-x1) (1-x2) (1-x3) 
h2 = x1 (1-x2) (1-x3) 
h3 = (1-x1) x2 (1-x3) 
h4 = x1 x2 (1-x3) 
h5 = (1-x1) (1-x2) x3 
h6 = x1 (1-x2) x3 
h7 = (1-x1) x2 x3 

h8 = x1 x2 x3   (1) 

 
An expansion of each of three dimensions into “low”, “medium”, and “high” regions would give 
H=3x3x3=27 expansion functions. T(x) can be interpreted as a fuzzy membership function, describing 
how much an input parameter falls into a particular category, although the product formulation of the 
expansion functions differs from the traditional minimum formulation of fuzzy logic [19]. There are 
configurations in which the locations of the expansion function centers are adaptable [8], but these have 
not been pursued for this paper. 
 The net output is a linear combination of these functions of the input vector, with the coefficient of 
the jth expansion function being called wj. The net output is  
 

 

  

y = wjhj
j=1

H

=
 

w 
 

h  (2) 



  

 

6

 
Vector notation will be used to represent any set of H quantities that correspond to the H expansion 
functions, such as the set of weights, w, connecting the second layer nodes to the output node, or the set 
of second layer node values, h. Any functional mapping (except one with an infinite number of 
discontinuities) can be represented by this type of expansion, as long as enough centers are used. A great 
advantage the multi-linear network has over nonlinear connectionist configurations like a multi-layer 
feed-forward network is that it can have a direct correspondence to a rule set. For example, the rule “IF 
(x1 is low and x2 is low and x3 is high) THEN target value is low” could be implemented by setting the 
corresponding weight (w5 in the above 2x2x2 network) equal to 0. Likewise, if a multi-linear net learns 
some set of weights, the corresponding knowledge can be directly extracted. 
 

4. Supervised Training 

 The behavior of the connectionist controller is completely determined by the values of its weights. 
Supervised training is the process of adjusting the network weights until the response of the network 
mimics the response of the expert. A first approximation of the weights can be obtained by evaluating the 
expert response when the input matches one of the expansion function centers exactly. For example, as 
seen in Fig.1, the expert controller assigns a target priority of 0.82 to a target that is near, low, and on 
bore-sight (i.e. an input vector {0,0,0}). For this set of inputs, the first expansion node output, h1, has a 
value of 1, while all the other nodes have a value of 0. If the first weight is set to 0.82, the network will 
give exactly the same response as the expert controller for this particular input state. Each of the H 
weights can be obtained, using the expert controller output values at the corresponding expansion 
function centers. The target priorities obtained at the centers of the 2x2x2 eight expansion function 
network are shown in Table 2. 
 
j x1 x2 x3    w[j]     
1 0  0  0  0.82  near/low/on-bore-sight 
2 1  0  0  0.0  far/low/on-bore-sight 
3 0  1  0  1.78  near/high/on-bore-sight 
4 1  1  0  0.16  far/high/on-bore-sight 
5 0  0  1  0.30  near/low/off-bore-sight 
6 1  0  1  0.0  far/low/off-bore-sight 
7 0  1  1  0.38  near/high/off-bore-sight 
8 1  1  1  0.12  far/high/off-bore-sight 

 
 near far near far 

high 1.78 0.16 0.38 0.12 
low 0.82 0 0.30 0 

 on-bore-sight off-bore-sight 
Table 2. The weights assigned to the eight expansion function nodes of a 2x2x2 multi-linear 
network, obtained by evaluating the rule-based controller output at the expansion function 
centers, in list and tableau forms. 

 
 The performance of the multi-linear fire controller with these weights was evaluated as follows. A 
2x2x2 network had its weights set to these values. The network was then used as the fire controller in a 
simulation of 10 sorties of 100 missiles each. The ABL with this fire controller intercepted 560 of the 
1000 missiles. The 8 expansion function network is in essence interpolating on eight points that match the 
rule-based controller exactly. The network thus obtained does not perform as well as the rule-based 
controller itself (which intercepts 625 of the 1000 missiles) although it does perform better than random 
target selection (which intercepts 512 of the 1000 missiles.) 
 The multi-linear network can be made to match the expert to any desired accuracy by using enough 
expansion functions. Table 3 shows the performance of various sized multi-linear networks, with weights 
found by evaluating the rule-based controller on the expansion function centers. For example, when the 
ground range to target is expanded onto seven centers (i.e. very near, near, somewhat near, medium range, 
somewhat far, far, very far), and the target altitude and turret slew are expanded into seven and three 
centers, respectively, the resulting 147 expansion functions very nearly match the rule based controller 
performance. 



  

 

7

 
H configuration intercepts 
8 2x2x2 560 

27 3x3x3 562 
32 4x4x2 616 
147 7x7x3 617 

rule-based  625 
Table 3. Performance of various sized multi-linear networks, initialized to match rule-based 
controller on expansion function centers, against 10 sorties of 100 missiles each. 

 
 In general, supervised training is an attempt to adjust the weights so that the network response best 
mimics a given controller over the whole input domain, rather than just at the expansion function centers. 
This is accomplished with the intermediary device of a training set, consisting of pairs of input vectors 
and the associated expert controller output. A training set can be obtained by collecting historical data, by 
polling experts, by experimental measurements, or as in this case, by a evaluating a knowledge-based 
controller over a set of input values. 
 The following index notation will be used, with no implicit summation over repeated indices:  
xik  kth component of the ith training input parameter set 

{xi1, xi2, ..., xiD} the ith training vector, representing a particular controller input 

ti  the expert controller output given the ith training vector as input 

hij  the value of the jth expansion function produced by the ith training vector 

yi  the network output for the ith training vector 

wj  the jth weight of the multi-linear network 

D  dimension of the input state vector 
H  number of expansion functions 
N  number of training set pairs 
 
 A baseline training set of 1000 vector - output pairs was generated, where each vector contains three 
parameters selected at random from ranges consistent with the simulated scenario, and each output is the 
corresponding expert controller target priority. The expansion functions of the network, such as those 
given in (1), are evaluated for each training vector, to get the hij. For a given set of weights, wj, the 
network output for the ith training vector is 
 

 

yi = wjhi j
j =1

H

 (3) 
 
The mean square error, Q, for a particular set of weights and the given training set, is 
 

 Q = 1
N yi ti( )

2

i=1

N

 (4) 

 
Supervised training is a search for the set of weights that minimize Q. An efficient formulation for 
evaluating Q is obtained by expanding (4) and pre-summing over the training set: 
 

 Q =
1
2

j=1

H

k=1

H

wjwk Ajk
j=1

H

wjbj + c   (5) 

 



  

 

8

where A is a symmetric H by H matrix with elements Ajk =
2
N hijhik
i =1

N

, and b is a vector of H elements, 

with elements bj =
2
N tihi j
i =1

N

, and c = 1
N ti

2

i=1

N

. For H=27 expansion functions and a training set with 

N=1000 training pairs, it takes 8.48 seconds to compute A, b, and c, and then 0.010 sec for each 
evaluation of Q with (5) on a Macintosh Quadra. 
 

5. Production training   

 In complex systems consisting of many interacting agents, the merit of the control strategy employed 
by one of the agents can be evaluated only by observing the system itself, or a simulation of the system. 
The merit of a controller is judged by how well it accomplishes its assigned goals as it interacts with other 
entities in a complex environment (i.e. in production). Production training differs from supervised 
training in that there is no given correct response for a given controller input vector. The production 
training process is a directed search for improved control strategies, in which trial controllers are 
generated from previous controllers, based on their performance evaluation. The performance of trial 
controllers is evaluated with the simulation package ELASTIC, described above. A performance 
evaluation based on simulation of 1000 engagements takes 90.0 sec on a Macintosh Quadra. A production 
evaluation of a controller performance requires 9000 times the computational resources of a performance 
evaluation of the kind used for supervised training.  
 With a faster computer, on-line adaptation becomes feasible. For example, this simulation-based 
performance evaluation takes 1.71 sec on a DEC alphaStation. If production training can discover better 
controllers by evaluating 500 trial controllers, this system would be able to adapt to changes that occur in 
the environment on a 15 minute time scale. 
 

  6. Multi-linear Regression 

 Supervised training of a multi-linear network can be accomplished with efficient and robust 
regression methods. This opens a variety of possible applications for multi-linear networks, in which 
rapid supervised training is more important than the non-linear capabilities of other connectionist 
architectures. These regressive methods produce the set of weights that exactly minimize the mean square 
error between the net and the training set. This exact solution is used in the assessment of the gradient 
descent and directed search methods that follow. The regressive methods are not otherwise relevant to 
production training. 
 The mean square error between the multi-linear network output and the training set for a particular set 
of weights was given in (4). The gradient of this mean square error is found by differentiating (4) with 
respect to weights. The jth component of the gradient of the mean square error is 
 

 Gj

Q

wj

=
2
N ( wk hik

k=1

H

ti )hij
i=1

N

= wk
k=1

H

Akj bj  (6) 

 
In vector notation, the gradient of the mean square error is 
 

 
  

 

G =

 

 Q =
 

w 
 

A 
 

b  (6a) 
 
A and b are independent of the weights. The set of weights that minimizes the mean square error is found 
by setting each component of the gradient to zero. This gives a set of H equations known as the normal 
equations. The weight vector that minimizes Q is obtained by inverting the normal matrix, A.  
 

 wj = Ajk
1bk

k=1

H

 (7) 

 



  

 

9

 When the problem is well posed, A is a symmetric, positive definite matrix [20]. In this case, the 
matrix can be inverted by the very efficient Cholesky decomposition method. The Cholesky 
decomposition of A, and the vector of weights corresponding to a given b, are found using modified 
versions of the routines choldc and cholsl [17]. For the eight expansion function network, with the 1000 
pair training set described above, the weights obtained by Cholesky inversion of the normal matrix are 
shown in Table 4. The optimal weight vector gives an rms error over the training set (i.e. the square root 
of Q) of 0.0736146. While this set of weights no longer matches the expert controller at the expansion 
function centers, it provides a better mimicry over the whole input domain. 
 

 near far near far 
high 2.48 -0.50 -0.56 0.95 
low 0.63 -0.57 0.18 -0.11 

 on-bore-sight off-bore-sight 
Table 4. The weights that minimize the mean square error of a 2x2x2 multi-linear network 
relative to the 1000 training pair training set, obtained by Cholesky inversion of the normal 
matrix. 

 
 A 2x2x2 network had its weights set to the values that minimize the error with respect to the 1000 
pair training set (shown in Table 4). The network was then used in the fire controller in a simulation of 10 
sorties of 100 missiles each. The ABL with this fire controller intercepted 586 of 1000 missiles. The 8 
expansion function network which best mimics the rule-based controller does not perform as well as the 
rule-based controller itself (which intercepts 625 of the 1000 missiles) but it does perform significantly 
better than the 2x2x2 network which had its weights initialized on the eight expansion function centers. 
  If the normal matrix happens to be nearly singular, direct inversion is problematic [17,18,20]. In this 
case, singular value decomposition can be used to invert the normal matrix, A, or the design matrix (the N 
by H matrix with elements hij). The singular value decomposition of the design matrix, and the vector of 
weights corresponding to a given ti, are found using modified versions of the routines svdcmp and svbksb 
[20]. The normal matrix can also be inverted by singular value decomposition. This method produces the 
same number of singularities as singular value decomposition of the design matrix. When the matrices are 
not singular, the same weight vectors are generated. When the matrices are singular, different weight 
vectors are obtained, but both give the same output when used in (2).  
 The relative computational requirements of these three regressive methods have been examined for 
the case of a 3x3x3 multi-linear network (H=27), with 1000 training pairs. The roughly 1.5 million 
multiply-and-adds needed to set up A and b require 8.48 sec on a Macintosh Quadra. Cholesky inversion 
of the 27x27 normal matrix then requires 0.066 sec, while singular value decomposition of the normal 
matrix requires 1.38 sec. 41.5 sec are required to set up the 1000x27 design matrix, and a further 36.7 sec 
to invert it by singular value decomposition. 
 

 7. Gradient Descent Training Methods 

 The regressive methods provide a direct solution for the set of weights that gives the multi-linear 
network that best matches the training set. In other widely used connectionist configurations, there is no 
relation like (7) that can be solved for the optimal set of weights, but there are explicit formulations for 
the mean square error, and for the gradient of the mean square error with respect to the weights, 
analogous to (5) and (6). Given a set of weights, the gradient can be used to generate a new set of weights 
that ought to have a better match to the training set. An adaptable controller can then be trained by an 
iterative generation of improved weight sets. Supervised training with any of several gradient descent 
methods (e.g. greedy hill climbing or conjugate gradient methods, with back propagation of errors used to 
find the gradient) make up the majority of neural network applications, and are well characterized [18]. 
Representative gradient descent methods were evaluated for supervised training of the multi-linear 
network on a training set produced with the knowledge-based controller.  These methods are 
characterized by how many evaluations of the mean square error are required to reach a solution close to 
the optimal solution. Even though gradient descent approaches are not suitable for general production 
training, they can be used as a standard of comparison for the directed search methods that are suitable for 
production training.  



  

 

10

 
7.1 Gradient descent with individually presented training pairs. 
 A common gradient descent supervised training method works as follows. One of the training pairs, 
say the ith one, is selected. For a given vector of current weights w, the square error between the network 
output for the ith training pair input, and the actual  ith training pair output value is 
 

 
  
q =

 
w 

 

h t( )
2

 (8) 

 
The gradient of this square error with respect to the weights is 
 

 
  

q /
 

w = 2(
 

w 
 

h t)
 

h  (9) 
 
A second order Taylor series expansion of (8) about the current weight vector gives a quadratic 
approximation for the square error as a function of an increment to the weight vector: 
 

 
  
q(

 
w +

 
w ) = q(

 
w ) +

 
w 

 

 q +
1
2

 
w 

 

 (
 

w 
 

 q)  (10) 

 
By expanding (10), using (8) and (9), and assuming that the weight vector increment is in the direction 
opposite to the gradient of q, the weight vector increment that gives a zero error value in (10) is easily 
found to be 
 

 
  

 
w =

t
 

w 
 

h ( )
 

h 

h2
 (11) 

 
 A multi-linear network using a weight vector formed by adding the increment in (11) to the original 
weight vector would give a good output value for the current training vector, but would degrade 
performance for other training pairs in the training set. This increment is therefore reduced by a factor 
known as the learning rate, , so that some of the previous training is retained. The increment to the jth 
weight resulting from presenting the ith training vector is thus  
 

 wj =

(ti
l=1

H

wlhil)hij

hik
2

k=1

H
 (12) 

 
In an epoch, all the training pairs in the training set are presented in sequence, and the weights are 
incremented after each presentation using (12). The learning rate is initially set to a value of 1.0, to 
rapidly get to the neighborhood of the solution, and then gradually reduced to provide for convergence. 
The annealing schedule by which the learning rate is reduced depends on the particular training set, and 
generally requires some trial and error adjustments. For the 1000 training pair set derived from the 
knowledge-based fire controller, a power law annealing schedule, in which the learning rate is reduced by 
a factor of 0.9998 after each training pair, was found to be effective. 
 This individually presented gradient descent method was used for supervised training of a 2x2x2 
multi-linear network, using the 1000 pair training set described above. The eight weights were initialized 
to zeros, which gave a starting root mean square error of 0.4308. It took 27 epochs to reach a set of 
weights that produced a root mean square error of 0.07435 (within 1% of the optimal solution value of 
0.073614 obtained by Cholesky inversion). This method thus requires an equivalent of 27000 trial weight 
vector evaluations, 27000 gradient evaluations, and 27000 estimates of the increment size. If it is 
supposed that the gradient could not be implicitly evaluated, it might be expected that the weight vector 
increment corresponding to each training pair would require eight evaluations of q to estimate the 
gradient, plus six or ten more evaluations to bracket the minima in the gradient direction. Application of 



  

 

11

this approach without the implicit gradient information of (9) would require on the order of  500,000 trial 
evaluations to reach within 1% of the solution. Note, however, that these are not evaluations of the 
performance of the controller over the whole input domain, but rather evaluations of the controller 
response at a single input state.  
 The benefit provided by initializing the weights to a good starting vector was then examined by 
starting with the weights initialized to the values of the expert controller on the expansion function centers 
(from Table 2). The training still required 27 epochs to reach a solution within 1% of the optimal solution. 
The weight vector gets to the right neighborhood within a few hundred training pair presentations, 
regardless of its starting point. 
 
7.2 Batch mode gradient descent training. 
 An alternative gradient descent approach uses the entire training set at once to generate a new trial 
weight vector. The mean square error over the whole training set is given in (4), while the gradient of this 
mean square error (with respect to the weights) is given in (6).  As in the individually presented training 
pair case, the mean square error can be expanded about the current weight vector into a second order 
Taylor series. The various terms in the Taylor series can be expressed in terms of A, b and w, again 
constraining the weight increment to the direction opposite the gradient. The weight increment that 
minimizes the second order expansion of Q is found to be 
 

 
  

 
w =

G2
 

G 
 

G 
 

A 
 

G 
 (13) 

 
Again, a learning rate is used to aid convergence, and the weight increment in index notation becomes 
 

 wj =

Gj GkGk
k =1

H

l=1

H

GlAlmGm
m=1

H   (14) 

 
 This batch gradient descent method was used for supervised training of the 2x2x2 multi-linear 
network, using a learning rate of 0.9.  The weights were initialized to the rule-based values on the 
expansion function centers. The initial rms error between the multi-linear net and the training set output 
values was 0.21645. This method required 49 training epochs to reach a solution with an rms error of 
0.07435 (i.e. 1% more than the least rms error solution).  If the weights are instead initialized to zeros, 
this batch gradient descent with implicit increment size estimation requires 59 epochs. 
 The equivalent number of fitness evaluations (i.e. evaluations of Q) can now be estimated to 
characterize cases in which the gradient and estimated weight increment size are not available implicitly. 
Assuming that H additional evaluations of Q would be required to estimate the gradient, and again 
allowing six to ten evaluations to bracket the minima in the direction of the gradient, gives that these 49 
epochs would require the equivalent of around 800 evaluations of Q for this batch gradient descent 
method to find a solution within 1% of the best solution. In this batch approach, each evaluation reflects 
the performance of the controller over its entire domain. 
 

8. Directed Search Training Methods 

  In directed search methods, new trial solutions are generated from previous trial solutions and 
information about the performance of those previous trial solutions. Directed search methods can be used 
for supervised training. In production training, where gradients may not be well defined and where there 
may be many local optima, directed search methods might be the only means of improving adaptable 
controllers. Three directed search methods have been examined: pivot and forward-biased random offset 
with simulated annealing, downhill simplex, and the genetic algorithm. These methods are compared with 
the gradient descent approach for supervised training. They are also characterized for production training. 
 
8.1 Directed search by pivot and forward-biased random offset. 



  

 

12

 The pivot and random offset method starts with a weight vector (the pivot), and evaluates the 
performance of the corresponding multi-linear network controller. This performance is given by the mean 
square error relative to a training set for supervised training (i.e. by evaluation of (5)), and by a 
simulation-based performance evaluation for production training. An offset is obtained by applying a 
random increment to the pivot weight vector, and the performance of the offset is evaluated. If the 
performance is improved, the offset weight vector is accepted as the new pivot. Otherwise, a new offset is 
tried. When a successful offset is found, the next trial weight vector offset is biased toward the same 
direction. 
 The weight vector increment consists of a forward biasing component plus a random increment to 
each of the H weights. The forward biasing component is equal to one half of the last successful 
increment. The random component is selected from a uniform distribution in the interval (- , ), where  
is implemented as an adaptive parameter. The algorithm for adjusting  increases  by 2% when the 
offset performance exceeds the pivot performance, and decreases  by 2% when the offset performance is 
worse than the pivot performance. If  becomes too large (>0.5) or too small (<0.001), it is reset to an 
intermediate value (0.05). 
 The performance of this pivot-offset method is stochastic, depending on the initial random seed used 
to generate the random weight increments. For supervised training in the 8 expansion function case with 
1000 training pairs, with the weights initialized to zeros, a series of 10 independent pivot-offset searches 
required as few as 317 performance evaluations, or as many as 2002 to converge to a solution with rms 
error within 1% of the error of the optimal solution. The mean requirement for the 10 searches was 1152 
evaluations. This compares to the equivalent of about 800 evaluations required to reach this accuracy with 
the batch gradient descent method. If the initial set of weights is set to the values obtained at the 
corresponding expansion function centers with the knowledge-based controller, the required number of 
performance evaluations ranges from 278 to 1392, with a mean (in 10 runs) of 920. A good starting 
weight vector improves the search efficiency. 
 A simulated annealing approach has been implemented to allow escape from local optima that 
typically arise in production training. The offset is always accepted if its performance exceeds that of the 
pivot. With simulated annealing, the offset is also occasionally accepted when its performance is worse. 
The probability of acceptance of a worse solution depends on a “temperature” parameter, T, which has the 
same units as the measure of performance. The implementation of the acceptance criteria is: in a search 
for increased performance, if the performance of the offset exceeds the performance of the pivot plus the 
temperature times the natural log of a uniform random variate between 0 and 1, the offset is accepted as 
the new pivot. In a search for smaller measure of performance (e.g. search for smaller Q), if the measure 
of performance of the offset is smaller than the measure of performance of the pivot minus the 
temperature times the natural log of a uniform random variate between 0 and 1, the offset is accepted as 
the new pivot. This produces a series of trial controllers that has a Boltzmann distribution of performance 
[17, 18, 21]. The temperature is reduced by a constant factor after each performance evaluation 
(producing a power law annealing schedule), gradually reducing the likelihood of accepting a worse 
offset. Simulated annealing degrades supervised training of a multi-linear network, because there is only 
one minima. 
 This pivot-offset method was applied to production training, using simulation of 10 sorties with 100 
missiles each to evaluate the trial multi-linear network fire controllers. A 2x2x2 multi-linear network was 
used, with weights initialized to the expansion function center values of the shortest time-to-kill 
knowledge-based controller. The initial temperature was set at 5 missile kills. The annealing schedule 
reduced the temperature by 0.975 after each performance evaluation, so that by the 150th evaluation, 
worse offsets were rarely accepted. The pivot-offset directed search found a weight vector that intercepted 
667 of the 1000 missiles, after evaluating 500 trial weight vectors. This is significantly better than the 
performance of the original knowledge-based controller. The weights of the adapted controller are shown 
in Table 5. In comparison with the original controller, characterized in part in Table 2, the adaptable 
controller has learned that better performance is obtained by reducing the priority of low targets in 
general, except far, off-bore-sight ones, and increasing the priority of high, near, off-bore-sight targets. 



  

 

13

 
 near far near far 

high 2.27 0.06 1.27 0.04 
low -0.27 -1.03 -0.33 0.61 

 on-bore-sight off-bore-sight 
Table 5. The weights assigned to the eight expansion function nodes of a 2x2x2 multi-linear 
network, obtained by a forward biased pivot-offset search, with simulated annealing, 
evaluating 500 trial sets of weights. 

 
8.2 Directed search by Downhill Simplex.  
 Instead of tracking two weight vectors (pivot and offset), the simplex method uses H+1 weight 
vectors which form a “simplex” in the H dimensional weight vector space. In an iterative process, the 
worst corner of the simplex (that weight vector which gives the worst controller performance) is moved to 
the “opposite” side of the simplex, or failing that, in “toward” the center of the simplex. For supervised 
training, the performance of a weight vector is the mean square error relative to the training set, evaluated 
with (5). The downhill simplex search is performed with modified versions of the routines amoeba and 
amotry  [17]. This method requires about the same computational time for each performance evaluation as 
the pivot-offset method. 
 The number of evaluations required to attain a solution with an error within 1% of the  error of the 
optimal solution was observed to be a sensitive (in fact, chaotic) function of the starting simplex vertices. 
One vertex was taken as the origin (all weights set to zero). The other H vertices of the initial simplex had 
one of the H components incremented by , and the rest unchanged, where  is an adjustable parameter.  
For 10 different values of , ranging from 0.2 to 0.4, the number of required evaluations ranged from 226 
to 572, with an average requirement of 377 evaluations. This compares to 1152 for the pivot-offset 
method. If the initial simplex is constructed from a set of weights equal to the true values obtained at the 
corresponding expansion function centers, the mean required number of performance evaluations 
(averaged over 10 runs) is 305. 
  This downhill simplex method was applied to production training, using simulation of 10 sorties 
with 100 missiles each to evaluate the trial multi-linear network fire controllers. A 2x2x2 multi-linear 
network was used, with weights initialized to the expansion function center values of the shortest time-to-
kill knowledge-based controller. The downhill simplex directed search found a weight vector that 
intercepted 676 of the 1000 missiles, after evaluating 500 trial weight vectors. This is significantly better 
than the performance of the original knowledge-based controller. The weights of the adapted controller 
are shown in Table 6. This set of weights is distinct from that found by the pivot-offset search. It was 
verified that this set of weights is a locally optimal solution, by evaluating the performance of 16 slightly 
displaced weight vectors (each having one of the 8 weights perturbed by a small positive or negative 
increment). The resulting controller was also validated by evaluating the performance of the solution 
against a completely independent set of 10 sorties of 100 missiles each. In this test, the original rule-based 
controller intercepts  634 missiles, while the multi-linear net obtained by the downhill simplex search 
intercepts  678 missiles. 
 

 near far near far 
high 2.64 0.51 0.80 0.03 
low -0.13 0.43 0.35 0.45 

 on-bore-sight off-bore-sight 
Table 6. The weights assigned to the eight expansion function nodes of a 2x2x2 multi-linear 
network, obtained by a downhill simplex search, evaluating 500 trial sets of weights. 

 
8.3 Directed search with genetic algorithms. 
 A third directed search approach, evolutionary programming, is based on an analogy with biological 
evolution [22]. A set of trial solutions, called the population, evolves from generation to generation. The 
set of weights that characterize a trial multi-linear network controller makes up the chromosome 
associated with an individual. Each weight is a gene. In this application, the gene can take any real 
number value. Mutation of a gene is accomplished by adding an increment which is selected from a 



  

 

14

uniform random distribution in (- , ). Two individuals can be used to breed a third trial individual, using 
two point cross-over: the descendent receives the first and last parts of its chromosome from one parent, 
and the middle part from the other parent, with a random location of the cross-over points. 
 The members of the first generation of trial controllers are created by mutating an original set of 
weights. The measure of performance, or fitness, of each of the trial controllers in the population is then 
evaluated. The worst half of the population is discarded, to be replaced by new individuals. A new 
individual is generated from two parents, which are selected according to their fitness. The selection of 
parents is based of rank order of fitness, where the best controller in the population is five times more 
likely to be selected as a parent than the worst of the remaining top half of the population. The 
chromosome resulting from crossing two parents is then mutated. When the discarded half of the 
population has been replaced by new individuals, the performance of these new individuals is evaluated. 
This process is then iterated over successive generations. 
  For supervised training, the performance of a weight vector is the mean square error relative to the 
training set, evaluated with (5). The population size was set to 40, so that 20 new trial solutions are 
generated and evaluated in each generation. An annealing process was used for the mutation rate. 
Initially, after a new individual is formed by crossing parents, each weight of the new chromosome is 
incremented with a maximum increment of 0.1. The maximum increment is reduced by a factor of 0.99 
after each generation, so that less and less mutation is occurring as the search converges to a solution. 
This genetic algorithm search was applied for a 2x2x2 multi-linear network, using the 1000 pair training 
set described above. The initial population was obtained from mutants of the weights obtained by 
applying the original rule-based controller at the eight expansion function centers (Table 4). 28 
independent searches were undertaken. The worst of these required 6160 trial evaluations to reach a 
solution within 1% rms error of the optimal solution, while the best required 1620. The average 
requirement was 2564 performance evaluations. 
  This genetic algorithm was applied to production training, using simulation of 10 sorties with 100 
missiles each to evaluate the trial multi-linear network fire controllers. A 2x2x2 multi-linear network was 
used, with weights initialized to the expansion function center values of the shortest time-to-kill 
knowledge-based controller. The genetic algorithm directed search found a weight vector that intercepted 
678 of the 1000 missiles, after evaluating 500 trial weight vectors. This is significantly better than the 
performance of the original knowledge-based controller. The weights of the adapted controller are shown 
in Table 7. This set of weights is distinct from that found by the other searches. It was verified that this set 
of weights is a locally optimal solution. The new solution was validated by evaluating its performance 
against a completely independent set of 10 sorties of 100 missiles each. In this test, the original rule-based 
controller intercepts  634 missiles, while the multi-linear net obtained by the genetic algorithm search 
intercepts  682 missiles. 
 

 near far near far 
high 2.48 -0.01 -0.34 1.33 
low -0.17 -0.10 0.47 -0.27 

 on-bore-sight off-bore-sight 
Table 7. The weights assigned to the eight expansion function nodes of a 2x2x2 multi-linear 
network, obtained by a genetic algorithm search, evaluating 500 trial sets of weights. 

 
8.4 Demonstration of automatic adaptation to environmental changes. 
 A 4x4x2 multi-linear network (4 expansion centers in ground range to target and target altitude, 2 in 
slew angle) was constructed and initialized by setting the weights equal to the shortest time-to-kill 
controller output. As shown in Table 3, a fire controller using this network was able to intercept 616 
missiles of the 1000 missiles in simulation of 10 sorties of 100 missiles each. The multi-linear network 
output is shown in Fig. 2 for this initial set of weights, as a function of x1  (normalized range to target) 
and x2 (normalized target altitude), for x3 = 0 (target on bore-sight). Comparison with Fig. 1 shows how 
well this H=32 multi-linear network mimics the original controller, at least on bore-sight. 



  

 

15

0.0

0.5

1.0

1.5

2.0

T
ar

ge
t 

P
rio

rit
y

x1

x2

0
0 1

1

  
Figure 2. The output of a 4x4x2 multi-linear network fire controller, as a function of x1 
(normalized ground range to target) and x2 (normalized target altitude), for x3=0 (target on 
bore-sight), where the weights are set to the shortest time-to-kill values on the expansion 
function centers.  

 
 This multi-linear network fire controller was then evolved using the genetic algorithm directed 
search, using simulation of 10 sorties with 100 missiles each to evaluate the trial multi-linear network fire 
controllers.  After evaluating 500 trial controllers, a new controller was discovered that was able to 
intercept  684 of the 1000 missiles. Further search (5500 trial evaluations) found a new controller that 
intercepted 690 of the 1000 missiles. Additional search (to 75,420 evaluations) found no further 
improvement. The output of this new controller is shown in Fig. 3, again as a function of x1 and x2, for x3 
= 0. 

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

T
ar

ge
t 

P
rio

rit
y

x1

x2

0
0 1

1

 
Figure 3. The output of a 4x4x2 multi-linear network fire controller, as a function of x1 (normalized 
ground range to target) and x2 (normalized target altitude), for x3=0 (target on bore-sight), after directed 
search for improvements. 
 
 The above fire-controller has optimized its behavior for a scenario with 100 medium-range (400 to 
600 km) missiles per sortie. The environmental conditions were then changed to the scenario in which a 
sortie consists of 50 medium-range missiles and 50 short-range (250 to 350 km) missiles. These short-
range missiles burn out at a lower altitude, and at an earlier time, making them harder to intercept. The 



  

 

16

contingency for defense against short range missiles had in no way been pre-programmed into the 
controller. The traditional approach to adapting the behavior of a knowledge-based controller is to 
assemble a group of experts to add knowledge to the controller to prepare it for the new environmental 
conditions. The multi-linear network controller with simulation-based directed search adaptation allows 
the controller to automatically adapt its behavior to the new conditions. 
 When the multi-linear network controller adapted to the medium-range missile only scenario is 
applied to the new scenario with medium and short range missiles, it is able to intercept 581 of 1000 
missiles. The genetic algorithm method was used to adapt the controller to the new scenario. Using 600 
trial controller evaluations (requiring less than 15 minutes to compute on a DEC alphaStation), a new 
controller was automatically discovered that intercepted 606 of the 1000 missiles. The output of this new 
controller is shown in Fig. 4, again as a function of x1 and x2, for x3 = 0. Comparison with Fig. 3 shows 
that the controller has adapted to the presence of short range missiles by giving increased priority to lower 
altitude targets. 

-1.0
-0.5
0.0

0.5
1.0
1.5
2.0

T
ar

ge
t 

P
rio

rit
y

x1

x2

0
0 1

1

 
Figure 4. The output of a 4x4x2 multi-linear network fire controller, as a function of x1 
(normalized ground range to target) and x2 (normalized target altitude), for x3=0 (target on 
bore-sight), after directed search for improvements with a modified scenario that includes 
short-range missiles.  

  
 The battlefield environment again change, so that instead of having the missiles launched over a 3 
minute period, 100 medium-range missiles are launched over a 5 minute period. The shortest time-to-kill 
controller gives 671 intercepts of 1000 missiles for this new scenario. A genetic algorithm directed search 
found a 4x4x2 multi-linear network controller that gives 704 intercepts, after evaluating 500 trial weight 
vectors. Again, the adaptable controller automatically discovers a new controller behavior that is well 
adapted to un-anticipated environmental conditions. 
 A third modified scenario had 25 simultaneous launches, from a 10 by 10 km launch zone, located 
300 km in front of the loiter box. The performance of trial controllers is evaluated by simulating 40 
independent sorties, again giving 1000 total missile engagements. The shortest time-to-kill controller 
gives 337 intercepts of 1000 missiles for this scenario. A genetic algorithm directed search found a 4x4x2 
multi-linear network controller that gives 346 intercepts, after evaluating 500 trial weight vectors. It is not 
surprising that so little improvement can be attained for this scenario, since there is little to distinguish the 
25 simultaneously launched missiles. 
 

9. Conclusion 

 A simulated battlefield with an airborne laser missile interceptor provides an excellent test-bed for 
investigating controllers of entities that interact with a complex system. An approach has been 
investigated for enabling the controller to adapt to its environment. The approach is to transform a 



  

 

17

knowledge-based controller into an adaptable connectionist representation, use supervised training to 
initialize the weights so that the adaptable controller mimics the knowledge-based controller, and then use 
directed search with simulation-based performance evaluation to find controllers that are better adapted to 
the environmental conditions. The approach has the added benefit that the new knowledge can be directly 
extracted from the automatically discovered controllers.  
 The process of production training brings two new capabilities to the controller. First, it enables an 
automated search for improvements over the baseline expert controller. In a scenario in which a poor fire 
controller gives 512 intercepts, and the state-of-the-art knowledge-based fire controller gives 625 
intercepts, directed searches automatically discovered new controller behaviors that give as many as 690 
intercepts. 
 Three directed search methods were examined: pivot with forward-biased offset, downhill simplex, 
and evolutionary programming. These methods require a means of evaluating the performance of trial 
controllers, but do not require information about the gradient of the performance with respect to the 
adaptable controller parameters. They have the ability to avoid becoming trapped at poor but locally 
optimal controllers. All three methods successfully discovered improved controllers. Each of the 
improved controllers were verified to be locally optimal. The three controllers were nevertheless quite 
distinct from each other, and from the original representation of the knowledge-based controller. The 
controllers discovered by directed search were validated by evaluating their performance against 
independent sorties.  
 The second capability brought by production training is that the connectionist controller can develop 
adaptations to changes in the rest of the system. These adaptations can be developed off-line, by 
production training against alternative scenarios. Real-time or on-line adaptation can be accomplished 
when the directed search process is carried out faster than the time scale of the changes in the system. 
Some examples of rapid, automatic adaptation to modifications in the environment were examined. 
Without this directed search capability, experts would have to be assembled to revise rule-based 
controllers in response to changes in the environment. 
 The supervised training process was found to be an important antecedent to the directed search 
production training process.  This is because the directed search methods have a number of adjustable 
parameters (mutation rate, step size, variability in the initial set of trial controllers, temperature or 
mutation rate annealing schedule, etc.)  Good values for these parameters can be determined during 
supervised training, since the performance evaluations used in supervised training are much faster than 
those used in production training.  
 The problem space (the set of all possible input states combined with the set of all attainable rule set 
mappings) was sufficiently large to demonstrate the validity of the methodology. More dramatic 
improvements in performance can be obtained by using this methodology with more elaborate rule sets 
and state representations. For example, including a fourth controller input that indicates the extent to 
which a given missile is clustered with other missiles could allow an automatic search for controllers that 
reduce the time wasted on slewing the turret. 
 Nothing in this process is specific to fire controllers, except the representation of the state and the rule 
set mapping. This methodology of transforming a knowledge-based controller to an adaptive structure, 
evolving the weights automatically in the context of a synthetic environment, and transforming back to an 
improved rule-set, should apply to a wide variety of systems. 
 

References 

[1] M. M. Waldrop, Complexity, Simon & Schuster,  NY , (1992). 
[2] H. Plotkin, Darwin Machines and the Nature of Knowledge, Harvard University Press, Cambridge, MA, 

(1994). 
[3] A. Newell, Unified Theories of Cognition, , Harvard University Press, Cambridge, MA, (1990). 
[4] H. A. Simon, The Sciences of the Artificial, MIT Press, Cambridge, MA, (1981). 
[5] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA, (1992). 
[6] Handbook of intelligent control: neural, fuzzy, and adaptive approaches, D. A. White and D. A. Sofge, eds., 

Van Nostrand Reinhold, New York, (1992). 
[7] C. Barrett, R. Jones, U. Hand, “Adaptive Capture of Expert Knowledge,”  Los Alamos National Laboratory 

Technical Report LA-UR-95-1391(1995). 



  

 

18

[8] G. Danczyk, S. Mortenson, W. Sailor, P. Stroud, “Airplane based free electron laser concept overview,” proc. 
PBFEL Workshop, Los Alamos National Laboratory, (Dec. 4, 1990). 

[9]  “Teams to Submit Bids For Airborne Laser,” Aviation Week & Space Technology, (June 10, 1996). 
[10] P. D. Stroud, “Anisoplanatic, Bandwidth, and Scintillation Effects of Atmospheric Turbulence on Laser 

Propagation across Long Paths Between an Airborne Laser and a Flying Target", proc. CLEO, (1992). 
[11]  P. D. Stroud, “Anisoplanatism in adaptive optics compensation of a focused beam with use of distributed 

beacons,” J. Opt. Soc. Am. A/Vol. 13, No 4, pp 868-874, April 1996. 
[12] P. D. Stroud, “Statistics of intermediate duration averages of atmospheric scintillation,” Optical Engineering, 

Vol. 35, No. 2, pp 543-548, Feb 1996. 
[13]  “TEMPEST (TACCSF Exploratory Model of Performance, Strategy, and Tactics),” numerical simulation 

package copyright by S. Mortenson, Los Alamos National Laboratory and the Regents of the University of 
California, 1992. 

[14]  ISSAC-ABEL, simulation package developed by W.J.Shaeffer and Associates. 
[15]  The Extended Air Defense Simulation (EADSIM) User’s Reference Manual, US Army SSDC, Huntsville 

Alabama, 1993. 
[16]  J. Brown, C. Heydemann, J. Soukup, “Theater Air Command and Control Simulation Facility ABL Test 6,” 

Airborne Laser Program report, Phillips Laboratory, Albuquerque NM, 1994. 
[17] W. Press, S. Teukolsky, W. Vetterling, B. Flannery,  Numerical Recipes in C, 2nd ed., Cambridge University 

Press,(1992). 
[18]  T. Masters, Practical Neural Net Recipes in C++, Academic Press, Inc, Boston (1993). 
[19]  B. Kosko, Neural Networks and Fuzzy Systems, Prentice-Hall (1992). 
[20] S. Ergezinger, E. Thomsen, “An Accelerated Learning Algorithm for Multi-layer Perceptrons: Optimization 

Layer by Layer”, IEEE trans. Neural Networks, vol 6, 1,(Jan 1995). 
[21] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, “Equation of State Calculations by Fast 

Computing Machines,” J. Chem. Phys., vol. 21, no. 6, (1953).  
[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley 

Publishing Co., (1989). 


